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Abstract. This paper studies a continuous time queue system with
second optional service where all the arriving customers demand the
first “essential” service while only some of them demand the second
“optional” service with probability α. The service time of the first essen-
tial service and the second optional service both are independent and
arbitrarily random variables. Whenever a busy period is completed, the
server takes a vacation. If there is at least one customer waiting at a vaca-
tion, the server immediately serves the customer. Otherwise, the server
takes another vacation with probability p, or remains idle with probabil-
ity 1 − p. We give some performances analysis of this model. Finally, it
gives some numerical examples to illustrate the effect of the probabilities
λ and p on the mean system size, waiting time, the probabilities when
the server is idle and is on a vacation.

Keywords: Continuous time queue · Second optional service · General
randomized vacation policy · Supplementary variable method

1 Introduction

As soon as the first essential service of a customer is completed, he or she immedi-
ately leaves the system with probability α or accepts the second optional service
with probability 1−α. This service policy is called second optional service policy
and was firstly studied by Madan [1]. The literature discussed an M/G/1 queue
with the second optional service in which the first essential service time follows
a general distribution, but the second optional service is assumed to be expo-
nentially distributed. Medhi [2] extended Madan’s model by considering that
the second optional service follows a general distribution. Wang [3] examined an
M/G/1 queue with second optional service and breakdowns in which the first
c© Springer International Publishing AG 2018
B.-Y. Cao (ed.), Fuzzy Information and Engineering and Decision,
Advances in Intelligent Systems and Computing 646, DOI 10.1007/978-3-319-66514-6 30
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298 Y. Chen et al.

essential service time follows a general distribution, but the second optional ser-
vice is assumed to be an exponential distribution. In addition, there are many
other queue models concerned second optional service which have been studied
in recent years, details of which may be seen [4–18].

When a busy period is completed, the server immediately takes a vacation.
The server will serve the customers if there are customers waiting in the queue at
the end of a vacation. Otherwise, the server either remains idle with probability
p or takes another vacation with probability 1 − p. This pattern continues until
the server has taken J vacations. The server keeps idle, if there are not customers
in the system at J th vacation. This vacation policy is called randomize vacation
policy and was studied by Ke [10]. However, some more complex queue systems
with this policy are hard to analysis, as in a queue system with working vacations.
Therefore, we cancel the limit of randomized vacation policy, namely the server
remains idle with probability p or takes another vacation with probability 1 − p
if no customers are waiting for service at the end of any vacation, and then
let the pattern continue forever. Here we define this vacation policy as general
randomized vacation policy. The policy eliminates a parameter J so that it is
easy to be widely applied to some more complex queue systems. Moreover it
is not a stand alone vacation policy but also summarizes multiple and single
vacation policy. That is our motivation to put forward the general randomized
vacation policy.

The remainder of this paper is organized as follows. A full description of the
model and analysis of the system embedded with the Markov chain are given
in Sect. 2. In Sect. 3, some important measures performance of the system are
obtained. In Sect. 4, we give two special cases of the model. Finally in Sect. 5,
we present some numerical results to illustrate the effect of α and p on the
performance of the system. Section 6 concludes the paper.

2 Description and Analysis of Model

In the section, we describe our model with following assumptions. Customers
arrive the system according to a Poisson process with rate λ. When the first
“essential” service of a customer is completed by the server, he or she will
demand the second “optional” service with probability α. We assume that the
first “essential” service and the second “optional” service both follow general
distributions, with probability distribution functions G1(x) and G2(x), respec-
tively. In addition, let gk(x), 1

uk
, and uk(x)dx = dGk(x)

1−Gk(x) , k = 1, 2, denote the
corresponding probability density functions, means and hazard rate functions.
When an busy period is completed, the server immediately takes a vacation
with general distribution V (x). Let v(x), v and w(x)dx = dV (x)

1−V (x) be the corre-
sponding probability density function, mean and hazard rate function. If there
is at least one customer in the system at the end of the vacation, the server will
immediately serve the customer. Otherwise, the server will either take another
vacation with probability p or remain idle waiting for the arrival of customers
with probability 1 − p. Obviously, if p = 1, our model can be simplified to the

cylxq331@126.com



An M/G/1 Queue with Second Optional Service 299

M/G/1 queue with second optional service and multiple vacations; if p = 0, the
model can be also simplified to the M/G/1 queue with second optional service
and single vacation.

We assume, throughout this paper, that various stochastic processes involved
in the system are mutual independence and obey first-come first-served (FCFS)
service discipline. For a given function F (x), its Laplace-Stieltjes transform
(LST) denotes by F ∗(s) =

∫ ∞
0

e−sxdF (x). And then, we define ρ = λ
u1

+ α λ
u2

.
Obviously, ρ < 1 is the necessary and sufficient condition when a steady state
solution exists.

Let N(t) be the system size including the one being served (if any) at time
t, and denote by G−

1 (x), G−
2 (x) and V −(x) the elapsed first “essential” service,

elapsed second “optional” service and elapsed vacation at time t, respectively.
In addition, we introduce the following random variable

J(t) =

⎧⎪⎪⎨
⎪⎪⎩

0, if the server is idle at time t,
1, if the server is busy providing a essential service at time t,
2, if the server is busy providing a second optional service at time t,
3, if the server is taking a vacation at time t

At time t, the system can be described by the process (N(t), c(t)) where
c(t) = 0 if J(t) = 0; c(t) = G−

1 (x) if J(t) = 1; c(t) = G−
2 (x) if J(t) = 2 and

c(t) = V −(x) if J(t) = 3. For further studying the model, we define the following
limiting probabilities:

p0,0 = limt→∞ p(N(t) = 0, c(t) = 0),
p1,n = limt→∞ p(N(t) = n, c(t) = G−

1 (x);x ≤ G−
1 (x) ≤ x + dx), n ≥ 1, x ≥ 0,

p2,n = limt→∞ p(N(t) = n, c(t) = G−
2 (x);x ≤ G−

2 (x) ≤ x + dx), n ≥ 1, x ≥ 0,
p3,n = limt→∞ p(N(t) = n, c(t) = V −(x);x ≤ V −(x) ≤ x + dx), n ≥ 0, x ≥ 0

Then in steady-state condition, the Kolmogorov forward equations to govern
the model can be written as follows:

λp0,0 = (1 − p)
∫ ∞

0

p3,0(x)w(x)dx (1)

dp1,1(x)
dx

+ [λ + u1(x)]p1,1(x) = 0 (2)

dp1,n(x)
dx

+ [λ + u1(x)]p1,n(x) = λp1,n−1(x), n ≥ 2 (3)

dp2,1(x)
dx

+ [λ + u2(x)]p2,1(x) = 0 (4)

dp2,n(x)
dx

+ [λ + u2(x)]p2,n(x) = λp2,n−1(x), n ≥ 2 (5)

dp3,0(x)
dx

+ [λ + w(x)]p3,0(x) = 0 (6)
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300 Y. Chen et al.

dp3,n(x)
dx

+ [λ + w(x)]p3,n(x) = λp3,n−1(x), n ≥ 1 (7)

Equations (1)–(7) will be solved under the following boundary conditions at
time x = 0

p1,1(0) = λp0,0 + (1 − α)

∫ ∞

0
p1,2u1(x)dx +

∫ ∞

0
p2,2u2(x)dx +

∫ ∞

0
p3,1w(x)dx (8)

p1,n(0) = (1 − α)

∫ ∞

0
p1,n+1u1(x)dx +

∫ ∞

0
p2,n+1u2(x)dx +

∫ ∞

0
p3,nw(x)dx, n ≥ 2 (9)

p2,n(0) = α

∫ ∞

0

p1,nu1(x)dx, n ≥ 1 (10)

p3,0(0) = (1 − α)
∫ ∞

0

p1,1u1(x)dx +
∫ ∞

0

p2,1u2(x)dx + p

∫ ∞

0

p3,0w(x)dx (11)

In order to solve the above Equations, we define some probability generating
functions as follows:

Pi(x, z) =
∞∑

n=1

pi,n(x)zn, P3(x, z) =
∞∑

n=0

p3,n(x)zn, Pi(z) =
∫ ∞

0

Pk(x, z)dx

where i = 1, 2; k = 1, 2, 3.
Multiplying both sides of Eqs. (2) and (3) by zn (n = 1, 2, · · · ) and summing

over n, then we have

P1(x, z) = P1(0, z)[1 − G1(x)]e−λ(1−z)x (12)

Similar proceeding on the Eqs. (4)–(7), then we obtain

P2(x, z) = P2(0, z)[1 − G2(x)]e−λ(1−z)x (13)

and
P3(x, z) = P3(0, z)[1 − V (x)]e−λ(1−z)x (14)

In the same way, we can get the following equation from Eqs. (8) and (9)

P1(0, z) = λp0,0(z − 1) − p3,0(0) +
1 − α

z
P1(0, z)G∗

1(λ(1 − z))

+ 1
z P2(0, z)G∗

2(λ(1 − z)) + P3(0, z)V ∗(λ(1 − z))
(15)

For convenience, let r(z) = λ(1 − z). From Eq.(15), we have

P1(0, z) = λp0,0(z − 1) − p3,0(0) +
1 − α

z
P1(0, z)G∗

1(r(z))

+ 1
z P2(0, z)G∗

2(r(z)) + P3(0, z)V ∗(r(z))

Solving the differential Eq.(6) yields

p3,0(x) = p3,0(0)(1 − V (x))e−λx (16)

cylxq331@126.com
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Then multiplying both sides of Eq.(16) by w(x) and integrating with x from
0 to ∞, together with Eq.(1), we have

p3,0 =
λp0,0

(1 − p)V ∗(λ)
(17)

Substituting Eq.(17) into Eq.(15), we obtain

P1(0, z) = λp0,0(z − 1) − λp0,0
(1−p)V ∗(λ) +

1 − α

z
P1(0, z)G∗

1(r(z))

+
1
z
P2(0, z)G∗

2(r(z)) + P3(0, z)V ∗(r(z))
(18)

Since P3(0, z) = p3,0(0), Eq.(18) can be written as follows:

P1(0, z) = λp0,0(z − 1) − λp0,0
(1−p)V ∗(λ) +

1 − α

z
P1(0, z)G∗

1(r(z))

+
1
z
P2(0, z)G∗

2(r(z)) +
λp0,0

(1 − p)V ∗(λ)
V ∗(r(z))

(19)

Multiplying both sides of Eq. (10) by zn (n = 1, 2, · · · ) and summing over n,
then we have

P2(0, z) = αP1(0, z)G1(r(z)). (20)

Substituting Eq.(20) into Eq.(19), we obtain

P1(0, z) =
λzp0,0[1 + (1 − p)V ∗(λ)(1 − z) − V ∗(r(z))]

(1 − p)V ∗(λ)[(1 − α)G∗
1(r(z)) + αG∗

1(r(z))G∗
2(r(z)) − z]

(21)

Integrating both sides of Eq.(12) with x from 0 to ∞, then we get

P1(z) = P1(0, z)
1 − G∗

1(r(z))
λ(1 − z)

(22)

Substituting Eq.(21) into Eq.(22), we have

P1(z) =
zp0,0[1 − G∗

1(r(z))][1 + (1 − p)V ∗(λ)(1 − z) − V ∗(r(z))]
(1 − p)V ∗(λ)(1 − z)[(1 − α)G∗

1(r(z)) + αG∗
1(r(z))G∗

2(r(z)) − z]
(23)

Performing similar operations on Eqs. (13) and (14), then we get

P2(z) = P2(0, z)
1 − G∗

2(r(z))
λ(1 − z)

(24)

and

P3(z) = P3(0, z)
1 − V ∗(λ(1 − z))

λ(1 − z)
(25)

Then, substituting Eqs. (20) and (17) into (24) and (25), respectively, we
have

P2(z) =
p0,0zαG∗

1(r(z))[1 − G∗
2(r(z))][1 + (1 − p)V ∗(λ)(1 − z) − V ∗(r(z))]

(1 − p)V ∗(λ)(1 − z)[(1 − α)G∗
1(r(z)) + αG∗

1(r(z))G∗
2(r(z)) − z]

(26)
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and

P3(z) =
p0,0[1 − V ∗(r(z))]

(1 − p)V ∗(λ)(1 − z)
(27)

From Eqs. (23), (26) and (27), we get the probability generating function for
steady-state system size

P (z) = P1(z) + P2(z) + P3(z) + p0,0

=
p0,0[1 + (1 − p)V ∗(λ)(1 − z) − V ∗(r(z))]G∗

1(r(z))[(1 − α) + αG∗
2(r(z))]

(1 − p)V ∗(λ)[(1 − α)G∗
1(r(z)) + αG∗

1(r(z))G∗
2(r(z)) − z]

(28)

Using the normalization condition P1(z) + P2(z) + P3(z) + p0,0 = 1, thus we
have

p0,0 =
(1 − p)(1 − ρ)V ∗(λ)
λv + (1 − p)V ∗(λ)

(29)

Substituting p0,0 into Eq. (28), it is given as

P (z) =
(1 − ρ)[1 + (1 − p)V ∗(λ)(1 − z) − V ∗(r(z))]G∗

1(r(z))[(1 − α) + αG∗
2(r(z))]

[λv + (1 − p)V ∗(λ)][(1 − α)G∗
1(r(z)) + αG∗

1(r(z))G∗
2(r(z)) − z]

Based on the above analysis, we will give some performance analysis for the
system in the next section.

3 Performance Analysis

In the section, we will obtain the probability generating function of the steady
state system size at a departure epoch, and the mean values for the steady
state system size, waiting time, sojourn time. In addition, we will obtain the
probability for each state of the server.

We denote by πn, n = 0, 1, · · · the probabilities that there are n customers in
the system at a departure point (no including the one just departing from the
system). Then, we can obtain the forward equations as follows:

πn = M(1 − α)
∫ ∞

0

p1,n+1u1(x)dx + M

∫ ∞

0

p2,n+1u2(x)dx, n = 0, 1, · · · (29)

where M is the normalizing constant.
Multiplying Eq.(29) by zn (n = 1, 2, · · · ) and summing over n, then together

with Eqs. (12) and (13), we obtain the probability generating function of the
system size Π(z) at a departure epoch as follows:

Π(z) =
Mλp0,0[1 + (1 − p)V ∗(λ)(1 − z) − V ∗(r(z))]G∗

1(r(z))[(1 − α) + αG∗
2(r(z))]

(1 − p)V ∗(λ)[(1 − α)G∗
1(r(z)) + αG∗

1(r(z))G∗
2(r(z)) − z]

(30)
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by utilizing the normalizing condition Π(1) = 1, from Eq.(30), we have

M =
(1 − ρ)(1 − p)V ∗(λ)

λp0,0[λv + (1 − p)V ∗(λ)]
(31)

Substituting Eq. (31) into Eq. (30), we obtain

Π(z) =
(1 − ρ)[1 + (1 − p)V ∗(λ)(1 − z) − V ∗(r(z))]G∗

1(r(z))[(1 − α) + αG∗
2(r(z))]

[λv + (1 − p)V ∗(λ)][(1 − α)G∗
1(r(z)) + αG∗

1(r(z))G∗
2(r(z)) − z]

(32)

Thus, the probability generating function of the steady state system size at a
departure epoch is same as the one of the system size at a random epoch. From
the Eq. (32), we can have a theorem as follows:

Theorem 1. If ρ < 1, the steady-state system size L can be decomposed into
the sums of two stochastic variables, i.e., L = L0 + Ld, where L0 denotes the
steady-state system size at departure epoch of M/G/1 queue with second optional
service whose generating function has been given in [1], Ld is the steady-state
additional system size due to the general randomized vacations with the proba-
bility generating function as follows

Ld(z) =
1 + (1 − p)V ∗(λ)(1 − z) − V ∗(r(z))

(1 − z)[λv + (1 − p)V ∗(λ)]
(33)

Proof. From Eq. (32), it is very easy to obtain the theorem.

Utilizing Theorem 1, we can obtain a remark as follows.

Remark 1. If ρ < 1, the mean system size can be written as E[L] = E[L0] +
E[Ld], where E[L0] denotes the mean system size at departure epoch of M/G/1
queue with second optional service whose detailed expression has been given
in [1], E[Ld] is the additional mean system size due to the general randomized
vacations with the detailed expression as follows

E[Ld] =
λ2v(2)

2[λv + (1 − p)V ∗(λ)]
(34)

where v(2) stands for the two moment of the general distribution V (x).
Utilizing Remark 1 and Little formula, we can obtain the other two remarks

as follows.

Remark 2. If ρ < 1, the expected value for the sojourn time of a customer in
the system is given by

E[W ] =
E[L0]

λ
+

λv(2)

2[λv + (1 − p)V ∗(λ)]
(35)
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Remark 3. If ρ < 1, the expected value for the waiting time of a customer in the
system is given by

E[Wq] =
E[L0]

λ
+

λv(2)

2[λv + (1 − p)V ∗(λ)]
− 1

u1
− α

u2
(36)

From the expressions of P1(z), P2(z), P3(z) and p0,0, we can determined the
probability for each state of the server, as in the following Corollary 1.

Corollary 1. If ρ < 1, then

(1) the probability when the server is idle is

p0,0 =
(1 − p)(1 − ρ)V ∗(λ)
λv + (1 − p)V ∗(λ)

(2) the probability when the server is busy with supplying the first essential ser-
vice is

P1 = ρ1

(3) the probability when the server is busy with supplying the second optional
service is

P2 = ρ2

(4) the probability when the server is taking a vacation is

P3 =
(1 − ρ)λv

λv + (1 − p)V ∗(λ)

where ρ1 =
λ

u1
, ρ2 =

αλ

u2
.

4 Special Cases of the Model

In the section, we will give two special cases of our model by choosing the different
value of p. We will only study Π(z) for the two cases of the model, and the other
parameters can be studied similarly.

Case 1. Let p = 1. Then our model can be simplified to the M/G/1 queue with
second optional service and multiple vacations. Let p = 1 in Π(z). We have the
probability generating function of system size at a departure epoch as follows

Π(z) =
(1 − ρ)[1 − V ∗(r(z))]G∗

1(r(z))[(1 − α) + αG∗
2(r(z))]

λv[(1 − α)G∗
1(r(z)) + αG∗

1(r(z))G∗
2(r(z)) − z]

Case 2. Let p = 0. Then our model can be simplified to the M/G/1 queue with

second optional service and single vacation. In addition, let p = 0 in Π(z). We
have the probability generating function of system size at a departure epoch as
follows

Π(z) =
(1 − ρ)[1 + V ∗(λ)(1 − z) − V ∗(r(z))]G∗

1(r(z))[(1 − α) + αG∗
2(r(z))]

[λv + V ∗(λ)][(1 − α)G∗
1(r(z)) + αG∗

1(r(z))G∗
2(r(z)) − z]
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5 Numerical Results

In the section, our first purpose is to study the effects of parameters p and
λ on the expected system size of messages and the expected waiting time of
messages in the system. We assume that the length of a first essential service, a
second optional service and a vacation all follow exponential distributions with
parameters μ1, μ2 and ν, respectively.

For convenience, we choose μ1 = 2.5, μ2 = 2.0, ν = 1.5, α = 0.5 and p =
0, 0.2, 0.5, 0.7, 1, and then vary the value of λ from 0 to 1.0.
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Figures 1 and 2 show that the expected system size and the expected waiting
time are functions of the arrival rate λ and p. We find that whenever λ increases,
the expected system size and expected waiting time increase at a higher level
with a fixed p, so the both are increasing functions of λ. Similarly the both are
also increasing functions of p with a fixed λ.

The second purpose is to study the effects of parameters p and λ on proba-
bilities p0,0 and P3. We make some assumptions as above.
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Figures 3 and 4 show that p0,0 is a function of the arrival rate λ and p. We
find that λ increases, p0,0 decreases at a lower level with a fixed p, so it is a
decreasing function of λ. Furthermore, P3 is increasing function about p with a
fixed λ, but not of the monotonicity, of λ with a fixed p.

6 Conclusions

In this paper, we study the general randomized vacation policy for the M/G/1
queueing system with second optional service. By the Kolmogorov forward equa-
tions and supplementary variable method, we obtain the probability generating
functions for the steady state system size and expected values for the steady
state system size, waiting time and sojourn time. Additionally, utilizing numer-
ical illustration, we study the effects of parameters p and λ on the expected
system size of messages, the expected waiting time of messages and the proba-
bilities when the server is idle and is on vacation.
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